ELSEVIER

Contents lists available at ScienceDirect

Bioorganic & Medicinal Chemistry Letters

journal homepage: www.elsevier.com/locate/bmcl

8-Biarylchromen-4-one inhibitors of the DNA-dependent protein kinase (DNA-PK)

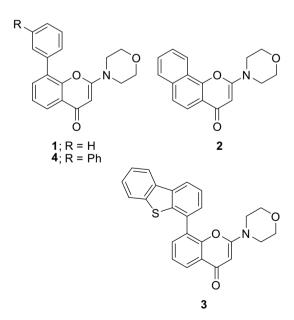
Marine Desage-El Murr^a, Celine Cano^a, Bernard T. Golding^a, Ian R. Hardcastle^a, Marc Hummersome^b, Mark Frigerio^b, Nicola J. Curtin^a, Keith Menear^b, Caroline Richardson^b, Graeme C. M. Smith^b, Roger I. Griffin^{a,*}

^a Northern Institute for Cancer Research, School of Natural Sciences-Chemistry, Bedson Building, Newcastle University, Newcastle Upon Tyne NE1 7RU, UK

ARTICLE INFO

Article history: Received 5 June 2008 Revised 16 July 2008 Accepted 16 July 2008 Available online 20 July 2008

Keywords: DNA-PK Kinase inhibitor DNA-repair Chromenones Cancer


ABSTRACT

The synthesis and biological evaluation of libraries of 8-biarylchromen-4-ones enabled the elucidation of structure–activity relationships for inhibition of the DNA-dependent protein kinase (DNA-PK), with 8-(3-(thiophen-2-yl)phenyl)chromen-4-one and 8-(3-(thiophen-3-yl)phenyl)chromen-4-one being especially potent inhibitors.

© 2008 Elsevier Ltd. All rights reserved.

The cellular response to DNA double-strand break (DSB) formation is an essential component of normal cell survival, following exposure to DNA-damaging chemicals and ionising radiation. The DNA-dependent protein kinase (DNA-PK), a member of the phosphatidylinositol (PI) 3-kinase-related kinase (PIKK) family, plays an important role in DNA DSB repair via the non-homologous end-joining (NHEJ) pathway. The ability of DNA-PK to detect and signal the repair of DNA damage may also protect cancer cells from the cytotoxic effects of DNA-damaging cancer therapies. Accordingly, inhibition of DNA-PK has been demonstrated to potentiate the cytotoxicity of ionising radiation and a number of DSB-inducing antitumour agents in vitro. Fe A major objective of our research is the development of potent and selective DNA-PK inhibitors, suitable for clinical evaluation as chemo- and radio-sensitisers in the treatment of cancer.

In the absence of suitable structural biology information for DNA-PK, inhibitor design has been guided by a combination of homology modelling, utilising the known crystal structure of PI 3-kinase,⁷ and pharmacophore mapping based on the non-selective DNA-PK inhibitor LY294002 (1).⁸ These initial studies enabled the elucidation of structure–activity relationships (SARs) for DNA-PK inhibition, and the discovery of potent and selective chromenone inhibitors, exemplified by NU7026 (2).⁹ Encouraged by the

potency and kinase-selectivity of **2** and related compounds, a systematic variation of the substitution pattern on the chromenone

^b KuDOS Pharmaceuticals Ltd, 410 Cambridge Science Park, Milton Road, Cambridge CB4 OPE, UK

^{*} Corresponding author. Tel./fax: +44 191 222 8591. E-mail address: r.j.griffin@ncl.ac.uk (R.J. Griffin).

Figure 1. Structural components of 8-(biaryl-3-yl)chromen-4-one inhibitors of DNA-PK

pharmacophore was undertaken, employing a solution-phase multiple-parallel synthesis approach for the preparation of focused compound libraries. 10,11 NU7441 (3) was prominent amongst several hits emanating from the library screen, with an independent resynthesis confirming the high potency (IC50 = 12 nM) and DNA-PK selectivity of this chromenone. Preclinical antitumour studies with 3 have demonstrated that this DNA-PK inhibitor potentiates the in vivo cytotoxicity of topoisomerase inhibitors in a human tumour model. 12

Although less potent than NU7441 as a DNA-PK inhibitor, the 8-(biphenyl-3-yl)chromen-4-one derivative ($\bf 4$; IC₅₀ = 180 nM) was also identified from the library as a potentially interesting structural lead. In particular, the non-planar biphenyl motif of $\bf 4$ offered the opportunity to probe alternative regions of the ATP-binding domain of the kinase. In this letter, we report the results of studies designed to elucidate preliminary SARs for the 8-biarylchromenone pharmacophore varied with respect to three parameters as shown in Figure 1, namely the substituent R on the 3'-phenyl group, and the nature of the 'proximal' and 'distal' aryl groups. For this purpose, the core chromen-4-one scaffold and the 2-morpholin-4-yl substituent were retained. A solution-phase multiple-parallel synthesis approach was employed for the preparation of libraries of the required 8-biarylchromenones, several members

of which were found to exhibit potency comparable with the benchmark DNA-PK inhibitor NU7441 (3).

Our previous studies have utilised the chromenone triflate derivative **6** as a key reagent for the preparation of 8-substituted chromenone libraries, employing Suzuki–Miyaura palladium-catalysed cross-coupling reactions. This strategy was also amenable for the synthesis of the target substituted 8-biaryl-3-ylchromenones (**5**) through analogous reactions on the triflate building block **11**, which was readily accessible from **6** (Scheme 1). For ease of manipulation, and with a view to preparing **11** on a convenient scale, initial studies utilised 3-benzyloxyphenylboronic acid (**7**), which was available from 3-bromophenol by standard methods. Coupling of **7** with **6** gave the chromenone **8** in high yield, and subsequent removal of the benzyl protecting group by hydrogenation afforded the required phenol **9**.

Consistent with the known tolerance of the Suzuki–Miyaura reaction to a wide range of aryl substituents, ¹⁴ we subsequently found that the commercially available 3-hydroxyphenylboronic acid pinacol ester (**10**) could be coupled to **6**, to give **9** directly and in comparable yield. Smooth conversion of **9** into **11** was readily achieved with the mild triflating agent *N*-phenyltriflimide. Prior to undertaking library synthesis, a coupling reaction was conducted between triflate (**11**) and phenylboronic acid under previously optimised reaction conditions (Pd(PPh₃)₄, K₂CO₃, dioxane, reflux). The resulting 8-biphenylchromenone (**4**) proved identical to that prepared previously by an alternative method. ¹¹ Analogous cross-coupling reactions were conducted with **11** and 10 commercially available arylboronic acids in a GreenHouse[™] reactor (Radleys) to furnish the target arylchromenones (**5a–5j**) (Scheme 1).

Given the commercial availability of 1,3-phenylene-bis-boronic acid (12), the possibility of undertaking a 'one-pot' double Suzuki-Miyaura coupling reaction with chromenone triflate (6) and the appropriate bromoheterocycle (ArBr) was also investigated. Again, a model reaction conducted with 12, the triflate 6 and bromobenzene under microwave conditions (5 min at 150 °C) confirmed the viability of the reaction, with 4 being obtained in good yield (60%). This approach was utilised for the preparation of compounds (5k-5x) as shown in Scheme 1. Replacement of the 8-phenyl substituent of 4 by a substituted thienyl, thiazolyl or pyridyl group was achieved by coupling either the chromenone triflate (6) or the chromenone-8-boronate (13) with the appropriate heterocyclic boronic acid or dihaloheterocycle, respectively, as

Scheme 1. Reagents and conditions: (i) (**6** and **7**) cat. Pd(PPh₃)₄, K₂CO₃, dioxane, reflux, 88%, (**6** and **10**) cat. PdCl₂(dppf), Cs₂CO₃, THF, 90%; (ii) H₂, Pd/C, MeOH, 93%; (iii) PhNTf₂, Et₃N, THF, 77%; (iv) cat. Pd(PPh₃)₄, K₂CO₃, ArB(OH)₂, dioxane, reflux, 10–30%; (v) (**6** and **12**) ArBr, cat. PdCl(PPh₃)₂, Na₂CO₃, DME/H₂O/EtOH (7:3:2), microwave, 150 °C, 5 min, 50–70%; (vi) cat. Pd(PPh₃)₄, K₂CO₃, ArB(OH)₂ or aryl halide, DMF, 150 °C, 10 min, 40–90%; (vii) cat. Pd(P'Bu₃)₂, K₂CO₃, ArB(OH)₂, DMF, 150 °C, 5 min, 50–60%. [See Tables 1 and 2 for the nature of R in **5a–5x** and **15a–15v**, respectively.]

 Table 1

 Chemical structures and DNA-PK inhibitory activity of 2-morpholin-4-yl-8-phenyl-chromen-4-ones bearing a 3'-aryl substituent

Compound	R	$IC_{50}^{a} (\mu M)$	Compound	R	IC ₅₀ ^a (μM)
1 (LY294002)	н	1.6	51	Me	0.36
4		0.18	5m	Me	1.13
5a	НО	0.14	5n	Me	0.64
5b	MeO	0.83	50		0.38
5c	NC	1.48	5 p		0.27
5 d	OHC	1.10	5q	HN	1.82
5e	НО	1.0	5r	N S	0.49
5f	H ₂ N	1.9	5s	N Me	3.01
5g	CO ₂ H	0.51	5t	N N Me	1.23
5h	CO ₂ Me	0.26	5u	N	0.88
5i	S	0.018	5v	N	0.51
5j	s	0.02	5w	N	3.05
5k	Me—S	1.07	5x	N	1.57

 $^{^{\}rm a}\,$ IC $_{\rm 50}$ values were determined in accordance with Ref. 9.

 Table 2

 Chemical structures and DNA-PK inhibitory activity of 2-morpholin-4-yl-chromen-4-ones bearing 8-heteroaryl substituents

		Ö			
Compound	Ar	$IC_{50}^{a} (\mu M)$	Compound	Ar	$IC_{50}^{a} (\mu M)$
15a	Ph	0.40	151	N S N	0.17
15b	Ph	0.09	15m	Ph	1.55
15c	S	0.09	15n	Ph	0.67
15d	S	2.46	150	S	1.26
15e	HN	0.34	15p	S	0.30
15f	N S	0.71	15q	O N	1.24
15g	Ph S N	0.37	15r	N N	2.37
15h	S N	0.48	15s	N N	1.41
15i	S N	0.24	15t	N N	1.75

Table 2 (continued)

Compound	Ar	$IC_{50}^{a} (\mu M)$	Compound	Ar	$IC_{50}^{a}(\mu M)$
15j	O S N	0.24	15u	N H N	0.61
15k	N S N	0.51	15ν	N N	4.45

^a IC₅₀ values were determined in accordance with Ref. 9.

shown in Scheme 1. Subsequent Suzuki–Miyaura arylation of the intermediate **14** with a range of arylboronic acids afforded the target heterobiaryl–3-ylchromenones (**15a–15v**). In all cases, reaction progress was monitored by LC–MS analysis and the products were purified by semi-preparative HPLC. The DNA-PK inhibitory activity of both compound libraries is summarised in Tables 1 and 2.

Results and discussion. Our ongoing programme to develop inhibitors of DNA damage-activated kinases as radio- and chemopotentiators in cancer therapy has resulted in the identification of a number of potent and kinase-selective inhibitors of DNA-PK, most notably NU7441 (3). That significant inhibitory activity also resides in the simple 8-biphenylchromenone (4) was surprising, in light of our previous structure-activity studies indicating that an extended planar aromatic system at the chromenone 8-position is a prerequisite for potent DNA-PK inhibition. Previous studies had also demonstrated that chromenones bearing a biphenyl-3-yl group (e.g., 4) were more active than the corresponding biphenyl-2-yl and biphenyl-4-yl isomers. 11 This is consistent with the likely disposition of the 3-phenyl group of 4 relative to the terminal aryl ring of the dibenzothiophen-4-yl substituent in 3 within the ATP-binding pocket. The fact that 4 is approximately 10-fold more potent than the parent 8-phenylchromenone LY294002 (1, $IC_{50} = 1.6 \mu M$) strongly suggests that the 3-phenyl substituent of 4 is making additional binding interactions within the ATP-binding domain of DNA-PK. The overall objective of this study was thus to probe this putative binding interaction further, with a view to delineating SARs and improving potency.

For the small series of 4-substituted biphenyl-3-ylchromenones evaluated (5a-5f), it is evident that substitution did not improve activity, and with the exception of the 4-hydroxy derivative (5a), which proved to be equipotent with the biphenyl-3-ylchromenone (4), a 5- to 10-fold reduction in potency was observed (Table 1). A modest improvement in activity over compounds 5b-5f was observed for the 3,5-disubstituted derivatives (5g and 5h), but both compounds were less potent than 4. By contrast, replacement of the 3-phenyl group of 4 by an isosteric thiophen-2-yl (5i) or a thiophen-3-yl (5j) substituent improved DNA-PK inhibitory activity approximately 10-fold, with 5i and 5j exhibiting IC50 values of 18 nM and 20 nM, respectively. Interestingly, the introduction of a methyl group onto the thiophene ring (5k-5n) proved detrimental to inhibitory activity, with a 50-fold reduction in potency being observed for derivatives bearing a methyl group ortho to the heteroatom (**5k** and **5m**). This is consistent with the evidence adduced previously indicating limited steric tolerance at this position. The high potency exhibited by the thiophene derivatives 5i and 5j implies that a small electron-rich aryl ring is a prerequisite for DNA-PK inhibitory activity, and this is supported by the activity of phenol 5a. However, although the reduced potency of the corresponding 3-furanylchromenones (50 and 5p), the thiazole (5r) and the imidazole derivatives (5s and 5t) is consistent with this proposal, the weak activity of the analogous pyrrole derivative (**5q**) was unexpected. Perhaps not surprisingly, replacement of the pendant phenyl ring of **4** by a pyridyl or pyrimidinyl heterocycle (**5u**–**5x**) resulted in a loss of potency.

The activity of chromenones bearing heteroaryl groups at the 8-position is summarised in Table 2. Replacement of the 8-phenyl substituent of **4** by a thiophen-2-yl group (**15a** and **15b**) did not improve DNA-PK inhibitory activity, although the 4-phenylthiophen-2-yl derivative (**15b**), together with the bithiophene analogue (**15c**), proved the most potent member of this series ($IC_{50} = 90$ nM). With the exception of the indolyl derivative (**15e**), larger heterocyclic groups on the thiophene ring were detrimental to potency, and where direct comparisons were possible (**15a** with **15g**, and **15c** with **15i**), replacement of thiophen-2-yl by thiazol-2-yl was not beneficial. Substitution of the 8-phenyl ring of **4** by a 2- or 4-pyridyl group (**15m** and **15n**) resulted in a reduction in potency, and derivatives bearing other heterocycles on the pyridyl ring (**15o–15v**) were all also less active.

In summary, we have identified a novel series of 8-biarylchromen-4-ones as inhibitors of DNA-PK that exhibit a range of potencies against the isolated enzyme. Notably, 8-(3-(thiophen-2-yl)phenyl)chromenone (5i), the most potent of these inhibitors, was also found to potentiate the cell killing of 2 Gy of ionising radiation by a factor of 1.6 when used at concentration of 500 nM in a Hela cervical carcinoma cell-based assay. 12 This demonstrates that 5i is cell permeable, and that cellular inhibition of DNA-PK is achievable with this compound at pharmacologically relevant concentrations. Overall, the studies described in this letter have further elucidated an understanding of SARs for DNA-PK inhibition, and will provide a platform for ongoing efforts to optimise potency and in vitro/in vivo activity for this chemotype.

Acknowledgment

The authors thank Cancer Research UK for financial support.

References and notes

- 1. Hoeijmakers, J. H. J. Nature **2001**, 411, 366.
- 2. Shiloh, Y. Nat. Rev. Cancer 2003, 3, 155.
- Smith, G. C. M.; Jackson, S. P.. In Handbook of Cell Signalling; Elsevier Academic Press, 2003; Vol. 1, p 557.
- 4. Jackson, S. P. Carcinogenesis 2002, 23, 687.
- 5. Rosenzweig, K. E.; Youmell, M. B.; Palayoor, S. T.; Price, B. D. Clin. Cancer Res.
- 6. Boulton, S.; Kyle, S.; Yalcintepe, L.; Durkacz, B. W. *Carcinogenesis* **1997**, *17*, 2285.
- Walker, E. H.; Pacold, M. E.; Perisic, O.; Stephens, L.; Hawkins, P. T.; Wymann, M. P.; Williams, R. L. Mol. Cell 2000, 6, 909.
- 8. Izzard, R. A.; Jackson, S. P.; Smith, G. C. M. Cancer Res. **1999**, 59, 2581.
- Griffin, R. J.; Fontana, G.; Golding, B. T.; Guiard, S.; Hardcastle, I. R.; Leahy, J. J. J.; Martin, N.; Richardson, C.; Rigoreau, L. J. M.; Stockley, M.; Smith, G. C. M. J. Med. Chem. 2005, 48, 569.
- Leahy, J. J.; Golding, B. T.; Griffin, R. J.; Hardcastle, I. R.; Richardson, C.; Rigoreau, L.; Smith, G. C. M. Bioorg. Med. Chem. Lett. 2004, 14, 6083.

- 11. Hardcastle, I. R.; Cockcroft, X.; Curtin, N. J.; Desage El-Murr, M.; Leahy, J. J. J.; Stockley, M.; Golding, B. T.; Rigoreau, L. J. M.; Richardson, C.; Smith, G. C. M.; Griffin, R. J. J. Med. Chem. 2005, 48, 7829.
- Zhao, Y.; Thomas, H. D.; Batey, M. A.; Cowell, I. G.; Richardson, C. J.; Griffin, R. J.; Calvert, A. H.; Newell, D. R.; Smith, G. C. M.; Curtin, N. J. Cancer Res. 2006, 66, 5354.
- Rodriguez Aristegui, S.; Desage El-Murr, M.; Golding, B. T.; Griffin, R. J.; Hardcastle, I. R. Org. Lett. 2006, 8, 5927.
 Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457–2483; Suzuki, A. Chem.
- Commun. 2005, 14, 4759.
- Bringman, G.; Gotz, R.; Keller, P. A.; Walter, R.; Boyd, M. R.; Lang, F.; Garcia, A.;
 Walsh, J. J.; Tellitu, I.; Bhaskar, K. V.; Kelly, T. R. J. Org. Chem. 1998, 63, 1090.